Heterocyclic Studies. Part XXXIV.¹ Some 5*H*-Pyrimido[4,5-*b*][1,4]thiazine-6(7*H*)-ones, -4,6(3*H*,7*H*)-diones and -2,4,6(1*H*,3*H*,7*H*)-triones

By Jim Clark • and Ian W. Southon, Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT

Condensation of several 6-substituted 5-aminopyrimidine-4(3*H*)-thiones (1: X = CI, OEt. SH, or OMe) with chloroacetic acid and of the methoxy-compound with various α -bromo-esters gave corresponding 4-substituted 5*H*-pyrimido[4,5-*b*][1,4]thiazin-6(7*H*)-ones. The 4,6(3*H*,7*H*)-diones were made by acidic hydrolysis of the corresponding 4-methoxy-6(7*H*)-ones. Alkylation before or both before and after hydrolysis furnished 5- or 3,5-dialkyl derivatives of the diones. 3-Methyl- and 1,3-dimethyl-5*H*-pyrimido[4,5-*b*][1,4]thiazine-2,4,6(1*H*,3*H*,7*H*)-trione were made from the appropriate pyrimidinethiones and chloroacetic acid.

IN Part XXXII² we described the synthesis of some 4-(substituted amino)-5*H*-pyrimido[4,5-*b*][1,4]thiazin-6(7H)-ones as potential pharmaceutical agents. The work has now been extended to include several more thiazinones together with some diones and triones and certain alkyl derivatives of these compounds.

¹ Part XXXIII, J. Clark and M. S. Morton, preceding paper. ² J. Clark and I. W. Southon, *J.C.S. Perkin I*, 1974, 1805. (a) 4-Substituted 5H-Pyrimido[4,5-b][1,4]thiazin-6(7H)-ones.--Treatment of 4-chloro-6-ethoxy-5-nitropyrimidine with sodium hydrogen sulphide gave the amino-ethoxy-thione (1; X = OEt). This and its known chloro-, methoxy-, and mercapto-analogues (1; X = Cl, OMe, or SH) were condensed with chloroacetic acid to yield pyrimidothiazinones (2; $R^1 =$ $R^2 = R^3 = H$, X = OEt, Cl, OMe, or SH) (Table 1). The last compound was produced by treatment of the thione (1; X = SH) with only 1 mol. equiv. of chloroacetic acid; treatment with an excess of chloroacetic 5H-6(7H)-ones (2). The fact that the u.v. spectra of the 7,7-dimethyl and 7-unsubstituted compounds are almost identical, for both neutral molecules and anions, confirmed that the compounds exist in the 7H-tautomeric form in aqueous solution whether ionised or not (for u.v. spectra see Experimental section). (b) 5H-Pyrimido[4,5-b][1,4]thiazine-4,6(3H,7H)-diones.—The foregoing 4-methoxy-5H-pyrimidothiazin-6(7H)-ones, two of which had been prepared previously,^{4a} were converted into the corresponding 5Hpyrimidothiazine-4,6(3H,7H)-diones (3; $\mathbb{R}^3 = \mathbb{R}^4 = \mathbb{H}$)

 TABLE 1

 5H-Pyrimido[4,5-b][1,4]thiazin-6(7H)-ones

Compound (2)				Method of	Yield	Cryst.		Found (%)			Required (%)			
΄x	R۱	\mathbb{R}^2	R³ `	prepn.*	(%)	solvent	M.p. (°C)	Formula	C	Н	N	Ċ	Н	N
OEt	Н	н	н	(a)	36		198-200	C ₈ H ₉ N ₃ O ₂ S	44 ·8	4.3	19.7	44 ·5	4.3	19.9
Cl	н	Н	н	(a)	17		157	C ₆ H ₄ CIN ₃ OS	34 ·7	$2 \cdot 3$	20.5	35.7	$2 \cdot 0$	20.8
							(decomp.)							
SH	Н	н	Н	(a)	53		273 - 274	C ₆ H ₅ N ₃ OS ₂	36.5	$2 \cdot 7$		36.2	$2 \cdot 5$	
OMe	н	н	H	(a)	69	EtOH	192 - 193 +							
OMe	Me	н	Н	(b)	22	Pr ⁱ OH	173-174 ‡							
OMe	Me	Me	н	(b)	25	Pr ⁱ OH	186-187	$C_9H_{11}N_3O_2S$	48 .0	5.0	19.1	48.0	4.9	18.7
OMe	CH₂•CO₂H	н	н	(b)	28	H ₂ O	230232	C ₉ H ₉ N ₃ O ₄ S	42.8	3.7	16.5	42.3	3.55	16.4
						Me _s N·CHO								
OMe	н	H	Me	(<i>c</i>)	47	-	125126	C ₈ H ₉ N ₃ O ₂ S	$45 \cdot 1$	$4 \cdot 2$	19.7	45.5	4.3	19.9
OMe	н	н	CH, CH:CH,		81	Pr ⁱ OH-H _s O	64 - 65	$C_{10}H_{11}N_{3}O_{2}S$	49.9	$4 \cdot 9$	17.5	50.6	4.7	17.7
OMe	Me	Н	Me	(c)	73	PriOH	154 156	C ₉ H ₁₁ N ₃ O ₂ S	47.9	$5 \cdot 1$	19.0	48 ·0	4.9	18.7
OMe	Me	н	CH, CH:CH,		48	Pr ⁱ OH-H _o O	71 - 72	$C_{11}H_{13}N_3O_2S$	53.2	5.5	16.8	52.6	$5 \cdot 2$	16.7
OMe	Me	Me	Me	(c)	18	2	123 - 124	$C_{10}^{11}H_{13}^{13}N_{3}O_{2}S$	50.2	5.5	17.7	50.2	$5 \cdot 5$	17.6
*	* See Exercition at Lit 4 101 1028; D. C. Terrier and D. D. Carrie (I. One Cham. 1004.00.0101) must an a 100													

* See Experimental section. † Lit., 4 191-193°; E. C. Taylor and E. E. Garcia (J. Org. Chem., 1964, 29, 2121) quote m.p. 190- - 191°. ‡ Lit., 4 175--176.5.

TABLE 2

¹H N.m.r. data for 4-methoxy-5H-pyrimido[4,5-b][1,4]thiazin-6(7H)-ones ^a

	Compo	ound (2)	τ Values (J in Hz)							
(X	R۱	R ²	K3	2-H	OMe	7- Substituent	5-Substituent	Solvent			
OMe	Н	н	н	1.67	6.02	6.34(2H,s)	-0.23br (1H, s) ^b	$(CD_3)_2SO$			
OMe	Me	Me	Н	1.53	5.88	8.45 (6H, s)	1.73br (1H, s) b	CDC1,			
OMe	CH₂•CO₂H	Н	Н	1.67	6.03	5.89 (1H, t, J 7), 7.18 (2H, d, J 7)	0·35br (111, s) b	$(CD_3)_2^{'}SO$			
OMe	н	н	Me	1.57	5.98	6.34 (2H, s)	6.79 (3H, s)	(CD ₃),SO			
OMe	Me	н	Me	1.54	5.88	6·40 (1H, q, J 7) 8·47 (3H, d, J 7)	6.63 (3H, s)	ĊDĊĬ ₃			
OMe	Me	Me	Me	1.61	5.91	8.54 (6H, s)	6.64 (3H1, s)	CDCl ₃			
QMe	н	н	CH ₂ ·CH:CH ₂		6.04	6.64 (2H, s)	5.48 (2H, d, J 6) $4.26-4.64(1H, m), 4.92-5.10 (2H, m)$	CDCl ₃ ¢			
OMe	Me	Н	CH₂·CH:CH₂	1.78	6 ∙ 04	6.55 (1H, q, J 7), 8.53 (3H, d, J 7)	5:23-5:72 (2H, m), $4:24-4:62(1H, m), 4:92-5:08 (2H, m)$	CDCl ₃ ¢			
OEt	Н	Н	Н	1.69	d	6·34 (2H)	0-23br (1H, s) b				

• Measured on a Varian A60A spectrometer at normal probe temperature with tetramethylsilane as internal standard. • Removed on deuteriation. • Measured on a Varian HA-100 spectrometer. • Ethoxy-signal τ 5.58 (2H, q, J 7), 8.68 (3H, t, J 7).

acid is known to give the carboxymethylthiopyrimidothiazinone³ (2; $R^1 = R^2 = R^3 = H$, $X = S \cdot CH_2 \cdot CO_2 H$).

The methoxy-thione (1; X = OMe) was also condensed with bromosuccinic acid, ethyl α -bromopropionate, and ethyl α -bromoisobutyrate to produce the 7-carboxymethyl- (2; X = OMe, $R^1 = R^3 = H$, $R^2 = CH_2 \cdot CO_2 H$), 7-methyl (2; X = OMe, $R^1 = R^3 =$ H, $R^2 = Me$), and 7,7-dimethyl- (2; X = OMe, $R^1 =$ $R^2 = Me$, $R^3 = H$) pyrimidothiazinones (Table 1), identified by ¹H n.m.r. spectroscopy (Table 2) as ³ M Ishidate and H Yuki Chem and Pharm Bull (Labar)

³ M. Ishidate and H. Yuki, Chem. and Pharm. Bull. (Japan), 1960, 8, 131.

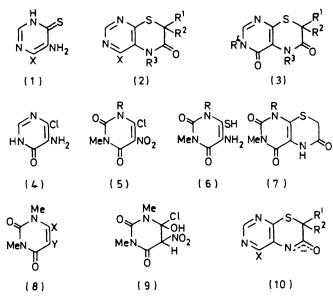
by acidic hydrolysis. This route was preferred to one in which the first step was hydrolysis of 5-amino-4,6-dichloropyrimidine to 5-amino-6-chloropyrimidin-4(3H)-one (4). Treatment of the latter with thioglycolic acid and related compounds was expected to give pyrimidothiazine-4,6-diones ^{4b} but the yield in the first step was too low to make the route practicable.

A range of 5-alkyl-5*H*-pyrimidothiazine-4,6(3*H*,7*H*)diones (3; \mathbb{R}^3 = alkyl, \mathbb{R}^4 = H) was obtained by alkylating the 4-methoxy-6(7*H*)-ones (2; X = OMe) with methyl iodide, benzyl chloride, or allyl bromide before ⁴ T. S. Safonova and M. P. Nemeryuk, *Khim. geterotsikl. Soedinenii*, (a) 1966, 5, 714; (b) 1971, 1, 73.

TABLE 3
5H-Pyrimido $[4,5-b][1,4]$ thiazine- $4,6(3H,7H)$ -diones

	Comp	ound (3)	Method	Yield	,	- ,	Fc	und (%)	Req	luired	(%)	
$\overline{\mathbb{R}^1}$	R ²	R ³	R4	prepn.*	(%)	M.p. (°C)	Formula	C	н	N	C	H	N
н	СН,∙СО,Н	н	н	(d)	66	275 - 277	C ₈ H ₇ N ₈ O ₄ S	39.5	3.0	17.1	39.8	$2 \cdot 9$	17.4
Me	Me	н	н	(d)	42	273	C ₈ H ₉ N ₃ O ₂ S	45.4	4.5	19.8	45.5	$4 \cdot 3$	19.9
н	н	Me	н	(d)	53	225 - 227	C,H,N,O2S	$42 \cdot 4$	3.7	21.4	42.6	3.6	21.3
Н	н	CH2·CH:CH2	н	(d)	49	146	C ₂ H ₂ N ₃ O ₂ S	48.3	$4 \cdot 2$	18.8	48 • 4	4.1	18.8
н	Me	CH ₂ ·CH:CH	н	(d)	55	203 - 204	$C_{10}H_{11}N_{3}O_{2}S$	50.0	4 ·9	17.4	50.6	4.7	17.7
н	${ m Me}$	Me	н	(d)	53	250 - 251	C ₈ H ₉ N ₃ O ₂ S	45.3	4 ·3	19.5	45.5	4.3	19.9
Me	Me	Me	н	(d)	40	197	C ₉ H ₁₁ N ₃ O ₂ S	47.9	5.0	18.7	48 ·0	4 ·9	18.7
н	н	CH ₂ ·CH:CH ₂	Me	(e)	45	128 - 129	$C_{10}H_{11}N_{3}O_{2}S$	50.1	4.7	17.7	50.6	4.7	17·7
н	н	Me	Me	(e)	37	239 - 241	C ₈ H ₉ N ₃ O ₂ S	46 ·2	4 ·6	19.8	45.5	$4 \cdot 3$	19.9
Н	Me	Me	Me	(e)	43	180	$C_9H_{11}N_3O_2S$	48 ·7	$5 \cdot 2$	19.3	48 ·0	4 ·9	18.7
				* C T			-						

* See Experimental section.


Table	4
-------	---

¹H N.m.r. data for 5H-pyrimido[4,5-b][1,4]thiazine-4,6(3H,7H)-diones ^a

	Comp	ound (3)		τ Values (J in Hz)							
$\overline{\mathbb{R}^1}$	R ²	R ³	R4	2-H	3-Substituent	5-Substituent	7-Substituents	Solvent			
н	н	Me	н	2.00		6·78 (3H, s)	6.43 (2H, s)	CD ₃) ₂ SO			
Me	Me	Н	н	2.01		$-0.17 \text{br} (1 \text{H}, \text{s})^{b}$	8.58 (6H, s)	$(CD_3)_2SO$			
Me	Me	Me	н	2.05		6.53 (3H, s)	8.50 (6H, s)	CDC1,			
Me	Н	Me	Η	1.98		6·72 (3H, s)	6·20 (1H, q, J 7), 8·63 (3H, d, J 7)	$(CD_3)_2^{\circ}SO$			
Me	Н	Me	Me	2.07	6·45 (3H, s)	6·60 (3H, s)	6·30 (1H, q, J 7), 8·48 (3H, d, J 7)	CDCl ₃			
Н	Н	CH ₂ ·CH:CH ₂	Н	2.22		5.27 (2H, d, J 6), 4.16 4.53 (1H, m), 4.89 5.06(2H, m)	6·60 (́2H, s)	CDCl3 ¢			
н	Н	CH ₂ ·CH:CH ₂	Me	2.25	6·57 (3H, s)	5·30 (2H, d, J ⁶), 4·18 4·55 (1H, m), 4·90 5·09 (2H, m),	6·66 (2H, s)	CDCl3 ¢			
Н	CH₂·CO₂H	Н	Н	2.07		0.07 (1H, s) b	5·98 (1H, t, J 7), 7·19 (2H, d, J 7)	(CD ₃) ₂ SO			

• Measured on a Varian A60A spectrometer at normal probe temperature with tetramethylsilane as internal standard. • Removed on deuteriation. • Measured on a Varian HA100 spectrometer.

hydrolysis of the 4-methoxy-group. 3,5-Dialkyl derivatives (3; R^3 and R^4 = alkyl) were prepared by

further alkylation of the 5-alkyl compounds (Table 3). Structures of the various alkyl derivatives were confirmed by 1 H n.m.r. spectroscopy (Table 4).

⁶ C. C. Cheng and T. K. Liao, J. Heterocyclic Chem., 1964, 1, 212.

(c) 5H-Pyrimido[4,5-b][1,4]thiazine-2,4,6(1H,3H,7H)triones.—The amino-mercapto-compound (6; R = H), which was derived from the chloro-nitro-compound (5: R = H), was condensed with chloroacetic acid to furnish a 3-methylpyrimidothiazinetrione (7; R = H). The 1,3-dimethyl analogue of the latter was similarly synthesised from 6-chloro-1,3-dimethyl-5-nitropyrimidine-2,4(1H,3H)-dione (5; R = Me). The last named pyrimidinedione (5; R = Me) has recently been reported by two groups of workers,^{5.6} who (respectively) give its m.p. as 65-68 and 80-83°. It may be obtained more pure (m.p. 85-87°) when prepared under milder nitration conditions than those published. Thus, whereas nitration of the precursor (8; X = Cl, Y = H) with mixed nitric and sulphuric acids at 10-15°, as in ref. 6, gave an impure product, carrying out the reaction at $0-5^{\circ}$ gave pure material. Above 15° appreciable hydrolysis to 1,3-dimethyl-5-nitrobarbituric acid (8; X = OH, $Y = NO_2$) occurred, and some of this was isolated and identified by comparison with an authentic specimen.7 When we treated the chloropyrimidine (8; X = Cl, Y = H) with fuming nitric acid and glacial acetic acid at 20-23°, or with nitric acid and acetic anhydride at 0-5°, or with fuming nitric acid alone at 10°, we obtained a different com-

⁶ W. Pfleiderer and E. Bühler, Chem. Ber., 1966, 99, 2997.

⁷ H. Biltz and K. Sedlatschek, Ber., 1924, 57, 339.

pound, m.p. 286-287°, which was assigned a 5,6-dihydropyrimidine structure (9). This assignment was based on microanalytical results, the absence of a normal 5-proton signal in the ¹H n.m.r. spectrum, and the mass spectrum. No molecular ion peak was observed but the base peak at m/e 190.0145 (Cl isotope pattern), due to C₆H₇³⁵ClN₂O₃ ions, and another intense peak at m/e 156.0535, due to C₆H₈N₂O₃ ions, may be attributed to reasonable losses of HNO₂ and NO₂Cl, respectively, from the absent molecular ion. The occurrence of addition reactions at the 5,6-bond of pyrimidines, particularly uracil derivatives, is well established and may involve, for example, addition of the elements of nitric acid,^{8,9} hypobromous acid,¹⁰ hypochlorous acid,8 or water.11

It has been noted previously² that 4-(substitutedamino-5*H*-pyrimido [4,5-b] [1,4] thia zin-6(7*H*)-ones (2:X = NHR or NR_2) are acidic, although they are essentially cyclic analogues of acyl derivatives of 4-aminopyrimidines. The present compounds (2)X = OMe, Cl, or OEt) are also freely soluble in sodium hydroxide solution and are reprecipitated on acidification. The 4-methoxy-compound (2; X = OMe, $R^1 = R^2 = H$) and its 7,7-dimethyl derivative (2; X = OMe, $R^1 = R^2 = Me$), for example had pK_a values of 11.00 and 11.28, respectively, and showed very similar spectral changes on ionisation. The fact that the 7,7-dimethyl derivative behaved like the other compounds confirms that it is ionisation of the 5-NH group which is responsible for the acidity of the compounds, and that dissociation of a 7-proton is not involved. Open chain analogues (5-acylaminopyrimidines) are not appreciably ionised even at pH 14. Perhaps the cyclic anions (10) are more effectively solvated than anions from simple acylamino-groups.

Representative examples of compounds in Tables 1 and 3 showed slight or negligible activity as antimicrobial agents.

EXPERIMENTAL

 pK_a Values were measured by a rapid spectrophotometric method.¹² U.v. spectra were recorded on a Unicam SP 800 spectrometer for buffered aqueous solutions. 4-Methoxy-5*H*-pyrimido[4,5-*b*][1,4]thiazin-6(7*H*)-one (pK_a 11.00 \pm 0.02) showed λ_{max} (neutral molecule at pH 8.9) 296 (log ε 3.74), 288inff (3.73), and 244 nm (4.21); λ_{max} (anion at pH 13.3) 309infl (3.80), 293 (3.89), and 254 (4.12). Its 7,7-dimethyl derivative (p K_a 11·28 \pm 0·02) showed λ_{max} (neutral molecule at pH 9.0) 292 (log ϵ 3.76), 287infl (3.75), and 243 nm (4.21); λ_{max} (anion at pH 13.3) 311infl (3.82), 293 (3.95), and 253 (4.09).

5-Amino-6-ethoxypyrimidine-4(3H)-thione. 4-Chloro-6ethoxy-5-nitropyrimidine (0.8 g) and aqueous N-sodium hydrogen sulphide (20 ml) were stirred at 20° until a clear solution was obtained (ca. 45 min), and then at 60-65° for a further 16 h. The solution was acidified with glacial

⁸ T. B. Johnson, Amer. Chem. J., 1908, 40, 19.
⁹ T. B. Johnson, J. Biol. Chem., 1908, 4, 407.
¹⁰ O. Baudisch and D. Davidson, Ber., 1925, 58, 1680; J. Biol. Chem., 1925, 64, 234; S. Y. Wong, J. Org. Chem., 1959, 24, 11; J. R. Piper and T. P. Johnston, *ibid.*, 1965, 30, 1247.

acetic acid and the resulting solid filtered off and reprecipitated from 0.5N-sodium hydroxide (10.8 ml). The ethoxypyrimidinethione had m.p. 193-195° (from ethanol) (Found: C, 41.6; H, 5.1; N, 25.1. C₆H₉N₃OS requires C, 42.1; H, 5.3; N, 25.4%).

5H-Pyrimido[4,5-b][1,4]thiazin-6(7H)-ones.—(a) 4-Substituted derivatives. The appropriate aminopyrimidinethione (l equiv.), chloroacetic acid (l·l equiv.) and א-sodium hydroxide solution (2.2 equiv.) were heated at $90-95^{\circ}$ for 1 h. The cooled solution was adjusted to pH 1 with 5N-hydrochloric acid and the pure pyrimidothiazinone (2; $R^1 = R^2 = H$) was filtered off (Table 1).

(b) 7-Substituted 4-methoxy-derivatives. 5-Amino-6-methoxypyrimidine-4(3H)-thione (1.57 g), N-sodium hydroxide (12 ml), and ethyl α -bromopropionate (1.54 ml) were shaken together vigorously for 5 min before being heated at 90-95° for 1 h. The 7-methyl compound (0.46 g) separated from the cooled solution (Table 1). The same pyrimidine $(1 \cdot 1 \text{ g})$, N-sodium hydroxide solution $(8 \cdot 4 \text{ ml})$, and ethyl α -bromoisobutyrate (1.23 ml) were similarly condensed together, but for 3 h, to yield the 7,7-dimethyl derivative (0.37 g) (Table 1). The pyrimidine (0.63 g), N-sodium hydroxide (8.8 ml), and bromosuccinic acid (0.94 g) were heated at 90-95° for 1 h. The cooled solution, on acidification to pH 1 with 5N-hydrochloric acid, yielded the 7-carboxymethyl derivative (0.37 g) (Table 1).

(c) 5-Alkyl-4-methoxy-derivatives. The appropriate thiazinone (1 equiv.), methyl iodide (or allyl bromide) (1.1 equiv.), and N-sodium hydroxide (1.1 equiv.) were shaken for a suitable time (24-48 h). The products were filtered off and washed with a little water (methyl derivatives) or propan-2-ol (allyl derivatives) before recrystallisation from a suitable solvent (Table 1).

5H-Pyrimido [4,5-b][1,4] thiazine -4,6(3H,7H)-diones. (d) 3-Unsubstituted derivatives. The 4-methoxypyrimidothiazinone (2; X = OMe) (0.3 g) and 2N-hydrochloric acid (3 ml) were stirred under reflux until a clear solution was obtained and for a further 2 h. The product crystallised from the cooled solution in an analytically pure state (Table 3).

(e) 3,5-Dialkyl derivatives. The relevant 5-alkyl compound (0.4 g) in 0.5N-sodium hydroxide (4.8 ml) was vigorously shaken with methyl iodide (0.15 ml) for 24-36 h. The product was filtered off and crystallised from a suitable solvent (Table 3).

5-Amino-6-chloropyrimidin-4(3H)-one.—A mixture of 5-amino-4,6-dichloropyrimidine (1.63 g) and 6N-hydrochloric acid (15 ml) was heated under reflux for 1 h and evaporated to dryness under reduced pressure. The residue was suspended in water (3 ml) and pH adjusted to 4 with n-sodium hydroxide. The pyrimidone was filtered off and crystallised from water as buff crystals (0.6 g), m.p. 241° (Found: C, 33.2; H, 2.8; N, 29.1. C₄H₄ClN₃O requires C, 33.0; H, 2.8; N, 28.9%)

5-Amino-6-mercapto-3-methylpyrimidine-2,4(1H,3H)-dione (6; R = H).—6-Chloro-3-methyl-5-nitropyrimidine-2,4(1H,3H)-dione (3.6 g) was heated under reflux for 3 h with a solution of sodium hydrogen sulphide prepared by saturating 2n-sodium hydroxide (53 ml) with hydrogen sulphide. The solution was acidified with glacial acetic acid and filtered. The mercapto-compound, purified by

¹¹ A. M. Moore, Canad. J. Chem., 1958, 36, 281; A. M. Moore and C. H. Thompson, ibid., 1957, 35, 163; Science, 1955, 122,

^{594.} ¹² J. Clark and A. E. Cunliffe, Chem. and Ind., 1973, 281.

reprecipitation from 2N-sodium hydroxide after alkaliinsoluble matter had been filtered off, had m.p. $>300^{\circ}$ (Found: C, 34.0; H, 3.7; N, 23.7. C₅H₇N₃O₂S requires C, 34.7; H, 4.1; N, 24.3%).

3-Methyl-5H-pyrimido[4,5-b][1,4]thiazine-2,4,6(1H,3H,-

7H)-trione (7; R = H).—The foregoing mercapto-compound (0.5 g) and chloroacetic acid (1.5 g) were heated at 140° for 5 min and cooled. The excess of chloroacetic acid was extracted with water (20 ml) and the residue boiled with dimethylformamide (20 ml). The insoluble pyrimidothiazinetrione (0.2 g), m.p. >300°, was filtered off as a buff solid (Found: C, 39.4; H, 3.4; N, 19.7. C₇H₇N₃O₃S requires C, 39.4; H, 3.3; N, 19.7%).

6-Chloro-1,3-dimethyl-5-nitrouracil. 6-Chloro-1,3-dimethyluracil (8.5 g) was added in portions to stirred concentrated sulphuric acid (25 ml), kept below 15° by cooling in ice. Fuming nitric acid (8.4 ml) was added slowly, the temperature being maintained at $0-5^{\circ}$, and the solution was then poured onto ice (100 g) with stirring. The product was at once extracted into chloroform (2 × 100 ml) and the extract was dried (MgSO₄) and quickly evaporated to afford a yellow crystalline solid (5.4 g), m.p. 85–87° (lit.,⁴⁰ 65–68°; lit.,⁵ 80–83°).

1,3-Dimethyl-5H-pyrimido[4,5-b][1,4]thiazine-2,4,6(1H,-3H,7H)-trione.—The foregoing chloro-compound (3·29 g) and aqueous 2N-sodium hydrogen sulphide solution (38 ml) were stirred under reflux for 3 h, acidified with glacial acetic acid, and filtered. The solid was reprecipitated from 2N-sodium hydroxide after removal of alkali-insoluble matter and heated with chloroacetic acid (0·69 g) and 0·5Nsodium hydroxide (14·5 ml) at 90—95° for 1 h. The pyrimidothiazinetrione (0·42 g), m.p. 250°, separated from the cooled solution (Found: C, 41·8; H, 3·8; N, 18·1. $C_8H_9N_3O_3S$ requires C, 42·3; H, 4·0; N, 18·5%).

A solution of the compound (0.38 g) in N-sodium hydroxide (2 ml) gradually deposited the sodium salt (0.27 g).

5-Benzyl-1,3-dimethyl-5H-pyrimido[4,5-b][1,4]thiazine-2,4,6(1H,3H,7H)-trione.—The foregoing sodium salt (0.27 g), water (3 ml), ethanol (3 ml), and benzyl chloride (0·15 ml) were heated under reflux for 1 h and evaporated to dryness under reduced pressure. Water (2 ml) was added to the residue and the *benzyl derivative* (0·062 g), m.p. 181—182° (from aqueous ethanol), was filtered off (Found: C, 55·8; H, 4·8; N, 13·5. $C_{15}H_{15}N_3O_3S$ requires C, 56·8; 4·8; N, 13·2%).

6-Chloro-5,6-dihydro-1,3-dimethyl-6-hydroxy-5-nitro-

uracil (9).—(a) 6-Chloro-1,3-dimethyluracil (10.5 g) was added in portions to a stirred mixture of glacial acetic acid (21.6 ml) and fuming nitric acid (7.8 ml) maintained at 20— 23°. The solution was stirred for a further 0.5 h, then poured onto ice, evaporated to small bulk, cooled, and treated with water (60 ml). The hydroxy-nitro-compound (5.1 g) which separated had m.p. 286—287° [from light petroleum (b.p. 80—100°) or methanol] (Found: C, 30.8; H, 2.9; N, 17.6. $C_6H_8ClN_3O_5$ requires C, 30.3; H, 3.4; N, 17.7%).

(b) 6-Chloro-1,3-dimethyluracil (1.75 g) was added in portions during 15 min to stirred fuming nitric acid (5 ml) kept at 10° . The solution was stirred at 20° for a further 0.5 h, then poured onto ice, and the product (1.1 g), m.p. 286—287° (from ethanol), was isolated as in (a).

(c) The same product was obtained by treating 6-chloro-1,3-dimethyluracil (1.75 g) in acetic anhydride (8 ml) at 0° with a mixture of fuming nitric acid (1.3 ml) and acetic anhydride (8 ml). After 0.5 h at $0-5^{\circ}$ and 0.5 h at 20° the mixture was poured onto ice and treated as in (a) [yield 0.76 g; m.p. 286-187° (from methanol)].

We thank the S.R.C. for a Co-operative Award in Pure Science (to I. W. S.) and Messrs Allen and Hanburys Ltd., who co-operated in the work and carried out the pharmaceutical testing. We also thank Mr. A. E. Cunliffe for pK_a values and u.v. spectra, Mrs. R. Maynard for mass spectra, and Mr. D. J. Barraclough for n.m.r. spectra.

[4/353 Received, 22nd February, 1974]